Blame view

static/plugins/spice-html5/rsa.js 4.03 KB
831eac332   zhuzhenchao   add file
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  // Downloaded from http://www-cs-students.stanford.edu/~tjw/jsbn/ by Jeremy White on 6/1/2012
  
  /*
   * Copyright (c) 2003-2005  Tom Wu
   * All Rights Reserved.
   *
   * Permission is hereby granted, free of charge, to any person obtaining
   * a copy of this software and associated documentation files (the
   * "Software"), to deal in the Software without restriction, including
   * without limitation the rights to use, copy, modify, merge, publish,
   * distribute, sublicense, and/or sell copies of the Software, and to
   * permit persons to whom the Software is furnished to do so, subject to
   * the following conditions:
   *
   * The above copyright notice and this permission notice shall be
   * included in all copies or substantial portions of the Software.
   *
   * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, 
   * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY 
   * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  
   *
   * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
   * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
   * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
   * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
   * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   *
   * In addition, the following condition applies:
   *
   * All redistributions must retain an intact copy of this copyright notice
   * and disclaimer.
   */
  
  
  // Depends on jsbn.js and rng.js
  
  // Version 1.1: support utf-8 encoding in pkcs1pad2
  
  // convert a (hex) string to a bignum object
  function parseBigInt(str,r) {
    return new BigInteger(str,r);
  }
  
  function linebrk(s,n) {
    var ret = "";
    var i = 0;
    while(i + n < s.length) {
      ret += s.substring(i,i+n) + "
  ";
      i += n;
    }
    return ret + s.substring(i,s.length);
  }
  
  function byte2Hex(b) {
    if(b < 0x10)
      return "0" + b.toString(16);
    else
      return b.toString(16);
  }
  
  // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
  function pkcs1pad2(s,n) {
    if(n < s.length + 11) { // TODO: fix for utf-8
      alert("Message too long for RSA");
      return null;
    }
    var ba = new Array();
    var i = s.length - 1;
    while(i >= 0 && n > 0) {
      var c = s.charCodeAt(i--);
      if(c < 128) { // encode using utf-8
        ba[--n] = c;
      }
      else if((c > 127) && (c < 2048)) {
        ba[--n] = (c & 63) | 128;
        ba[--n] = (c >> 6) | 192;
      }
      else {
        ba[--n] = (c & 63) | 128;
        ba[--n] = ((c >> 6) & 63) | 128;
        ba[--n] = (c >> 12) | 224;
      }
    }
    ba[--n] = 0;
    var rng = new SecureRandom();
    var x = new Array();
    while(n > 2) { // random non-zero pad
      x[0] = 0;
      while(x[0] == 0) rng.nextBytes(x);
      ba[--n] = x[0];
    }
    ba[--n] = 2;
    ba[--n] = 0;
    return new BigInteger(ba);
  }
  
  // "empty" RSA key constructor
  function RSAKey() {
    this.n = null;
    this.e = 0;
    this.d = null;
    this.p = null;
    this.q = null;
    this.dmp1 = null;
    this.dmq1 = null;
    this.coeff = null;
  }
  
  // Set the public key fields N and e from hex strings
  function RSASetPublic(N,E) {
    if(N != null && E != null && N.length > 0 && E.length > 0) {
      this.n = parseBigInt(N,16);
      this.e = parseInt(E,16);
    }
    else
      alert("Invalid RSA public key");
  }
  
  // Perform raw public operation on "x": return x^e (mod n)
  function RSADoPublic(x) {
    return x.modPowInt(this.e, this.n);
  }
  
  // Return the PKCS#1 RSA encryption of "text" as an even-length hex string
  function RSAEncrypt(text) {
    var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
    if(m == null) return null;
    var c = this.doPublic(m);
    if(c == null) return null;
    var h = c.toString(16);
    if((h.length & 1) == 0) return h; else return "0" + h;
  }
  
  // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
  //function RSAEncryptB64(text) {
  //  var h = this.encrypt(text);
  //  if(h) return hex2b64(h); else return null;
  //}
  
  // protected
  RSAKey.prototype.doPublic = RSADoPublic;
  
  // public
  RSAKey.prototype.setPublic = RSASetPublic;
  RSAKey.prototype.encrypt = RSAEncrypt;
  //RSAKey.prototype.encrypt_b64 = RSAEncryptB64;